
Upgrading the GMSEC Gradle Build 
Plugin

Nikhil Mittu1, Faith Cheung2, Rhea Mortam3, Theresa Beech3
1University of Maryland, College Park, MD USA, 2 Richard Montgomery High School, 

Rockville, MD USA, 3NASA Goddard Space Flight Center, Greenbelt, MD USA

Background
The Goddard Mission Services Evolution Center
(GMSEC) is a ground system architecture used broadly
by many NASA and other US government space
missions. It provides a scalable and extensible backbone
for satellite mission operations systems which reduces
ground system development and maintenance costs.
There are a numerous GMSEC components that can also
be selected based upon the mission requirements and
easily changed as the mission evolves.

Gradle
• The GMSEC components are built using the Gradle

build system.
• Most of the build tasks that the Components use are

common across all of the GMSEC components so a
custom Gradle plugin was created that contains all of
these Gradle tasks.

• This Gradle plugin is then added as a buildscript plugin
to the build.gradle files for each component.

• This means that the code for the tasks is just in one
location and changes only have to be made in one
location.

Publish a message to 
the bus

GMSEC Bus

Publisher Publisher/Subscriber

Subscribe to 
register interest

Subscriber

Upgrading the Gradle Plugin
When upgrading the GMSEC Gradle Plugin we moved
from using Groovy as the programming language to
Java. The move from Groovy to Java enhanced our
ability to perform unit and functional testing of the
plugin itself. Additionally the move to java will make the
builds using the plugin faster. The Java version of the
plugin also has increased maintainability. This is because
all of the tasks and actions in the plugin have been
separated out into their own classes. In addition to re-
writing the plugin in Java we also made improvements
and enhancements to the functionality of the plugin and
its tasks.

Testing the New Plugin
Because the new plugin is written in Java we are able to 
test the plugin using the Mockito library to write unit 
tests for all of the actions in the new Gradle plugin. The 
new Gradle plugin also has a functional test. The 
functional test runs a Gradle build against a sample 
project to ensure the overall functionality of the plugin 
works, and to test all of the tasks.

Izpack 5 Upgrade
The GMSEC plugin uses Izpack to package the built
components into an installer. Our work involved
upgrading from Izpack 4 to Izpack 5. GSS, a separate
GMSEC component, was already using Izpack 5 so now,
with version 2 of the plugin, all GMSEC components will
be using Izpack version 5. When upgrading to version 5
of Izpack the following things had to be done:
• Rewrite the Izpack task from scratch because the

third-party plugin we were using previously, only
supported Izpack 4.

• Update the Izpack configuration files in the sample
project to work with Izpack 5.

• Document all of the changes that need to be made to
the configuration files in the GMSEC developer’s
guide.

Migrating the Robot Test 
Framework

The original GMSEC Gradle Build Plugin utilized
acceptance test driven development (ATDD) through
Robot Framework for the purpose of testing code. The
process of upgrading the Gradle Plugin in turn, required
the migration of the robot test framework to the new
Gradle Plugin. Essentially, this meant converting the
Groovy code of the original robot test framework to Java
to correctly integrate it in the updated Plugin. Along
with migrating the robot test framework, the rebot task
also had to be migrated. The job of the rebot framework
task is to format the results of the robot framework
tests. Integrating the robot test framework into the
new plugin required the following changes:
• Updating the rebot task framework to delete

previously outputted logs of past tests before starting
up.

• Managing input and output dependencies using
Properties.

• Update the robot framework task to fall under the
test category.

• Document all changes in the GMSEC developer’s
guide.

Conclusion
The new Gradle plugin is written in a modular way such
that tasks and actions in the plugin are separated into
their own classes. This makes the plugin more
maintainable into the future. The fact that the plugin is
written in Java means that GMSEC team members will
not need to learn a new language. This will be very
useful in the future if new members of the GMSEC team
have to maintain the plugin. The new plugin also has
unit tests and functional tests. This gives us an
automated way to test the plugin before it is deployed
to production to ensure there are no bugs.

Acknowledgments
We would like to thank our mentors Rhea Mortam and
Theresa Beech for their guidance and help.


