
Continuous Delivery Pipeline for 
GMSEC
Nikhil Mittu

Sherwood High School 300 Olney Sandy Spring Rd, Sandy Spring, MD 20860

Background
The Goddard Mission Services Evolution Center
(GMSEC) is a program whose efforts are to
coordinate and reduce the cost of the development
of flight data systems. The GMSEC architecture
allows scalable and extensible ground and flight
systems to be built for missions. GMSEC allows for
the use of a number of components that can be
selected based off the needs of the mission. GMSEC
is also extremely flexible in that it allows for the
addition, deletion, and exchange of components
being used.

A continuous delivery pipeline provides a
streamlined build process that allows a project to
be tested and deployed more often throughout the
development life cycle. This can help developers
find issues and errors in their code quicker because
they are able to run a build, to catch issues,
whenever they make changes to the code.

Compile 
Code

Static 
Analysis

Unit Test 
Testing

Code 
Coverage 
Analysis

Integratio
n Testing

Acceptanc
e Testing

Packaging

Deployme
nt

Gradle
• The GMSEC API and the GMSEC component are

built using the Gradle build system.
• Most of the build tasks that the Components

use are common across all of the GMSEC
components so a custom Gradle plugin was
created that contains all of these Gradle tasks.

• This Gradle plugin is then added as a buildscript
plugin to the build.gradle files for each
component.

• This means that the code for the tasks is just in
one location and changes only have to be made
in one location.

Docker
• Docker containers are used to build and test the

GMSEC API and components in a consistent
environment.

• This means that the build process will always
work no mater how the environment on the host
build server changes.

• It will be easier to make changes to the build
environment in the future, for example if
additional software needs to be installed,
because changes only need to be made in the
Docker container not on the host.

Artifactory
• Artifactory is used as a repository for the

dependencies of the API and components.
• Gradle pulls the dependencies from Artifactory

at build time.
• The custom Gradle build plugin also has tasks to

publish jar, rpm and deb files, produced from
building the components and API, to Artifactory.

Jenkins
• Jenkins is used to preform the builds.
• When a build is triggered, the Jenkins build

server pulls the latest version of the necessary
Docker image from the Docker registry.

• The Jenkins build server then runs the Docker
container which builds the GMSEC API or a
GMSEC component.

Publish a message to the 
bus

GMSEC Bus

Publisher Publisher/Subscriber

Subscribe to register interest

Subscriber

Conclusion
With the new continuous development pipeline the 
build process for the GMSEC API and components is 
much simpler than before. Much of the build 
process is now automated. With the new build 
process all one needs to do to start a build is trigger 
a build in Jenkins. Jenkins will then run a Docker 
container that will run the necessary Gradle
commands necessary to build the project. After the 
build has completed, Gradle then publishes the 
completed build to Artifactory.

What I Learned
I learned how to use many valuable tools while
working on this project such as:
• How to use Gradle and how to create Gradle

plugins.
• How to use the Groovy programming language.
• How to use and create Docker containers and

images..

Artifactory

Jenkins Build 
Server

Docker 
container

Gradle Builds

Acknowledgments
I would like to thank my mentors Theresa Beech
and Rhea Mortam for their guidance and help


